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Abstract
We study invariance for eigenvalues of selfadjoint Sturm–Liouville operators
with local point interactions. Such linear transformations are formally defined
by

𝐻𝜔 ∶= −
𝑑2

𝑑𝑥2
+ 𝑉(𝑥) +

∑
𝑛∈𝐼

𝜔(𝑛)𝛿
(
𝑥 − 𝑥𝑛

)
or similar expressions with 𝛿′ instead of 𝛿. In a probabilistic setting, we show
that a point is either an eigenvalue for all 𝜔 or only for a set of 𝜔’s of measure
zero. Using classical oscillation theory it is possible to decide whether the second
situation happens. The operators do not need to be measurable or ergodic. This
generalizes the well known fact that for ergodic operators a point is eigenvalue
with probability zero.

KEYWORDS
eigenvalue, point interactions, random operator, random Sturm–Liouville operator, singular
perturbation
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1 INTRODUCTION

This work is about point spectra of selfadjoint Sturm–Liouville operators with 𝛿, 𝛿′-interactions. These are defined by
expressions of the form

𝐻𝜔 ∶= −
𝑑2

𝑑𝑥2
+ 𝑉(𝑥) +

∑
𝑛∈𝐼

𝜔(𝑛)𝛿
(
𝑥 − 𝑥𝑛

)
or with 𝛿′ instead of 𝛿. There are several ways to introduce this objects. They can be constructed by using form methods,
see [16] or by adding boundary conditions as in [11], for example. Here we shall use the approach developed in [5] which
generalizes Sturm–Liouville classical theory to include local point interactions. This has the advantage that selfadjoint-
ness, the Weyl alternative and related results can be established along the lines of a well known theory. For a detailed
study of this field, including many solvable models in quantummechanics as well as an extensive list of references see the
monograph [4].
The relations between the operators and their spectra, have deep consequences in several areas of functional analysis,

scattering theory, localization problems, dynamic behavior of quantum systems, differential and integral equations,
matrix theory and so on. We shall focus on the point spectrum and consider operators generated by 𝛿 or 𝛿′ interactions
with one common eigenvalue. This can be regarded as an inverse spectral problem, where given a point 𝐸 ∈ ℝ one tries to
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characterize the sequences 𝜔 for which 𝐸 belongs to the point spectra of the operators 𝐻𝜔. Placing our operators
in a random environment, we are able to give the characterization of operators sharing the same eigenvalue in a
probabilistic setting.
In the random situation we consider here, the 𝜔 associated to 𝐻𝜔 is a stochastic process and each 𝜔(𝑛) a random

variable with continuous (maybe singular) probability distribution. Our operators 𝐻𝜔 do not have to be measurable (see
Definition 4.13 ) and𝜔 does not have to be a stationarymetrically transitive random field or ergodic, see Section 9.1 [7]. For
metrically transitive random operators it is well known that the probability for a given 𝐸 ∈ ℝ to be an eigenvalue is zero
(see [15, Section 4.3, Corollary 1], [20, Theorem 2.12]). If we do not have this condition, in principle any situation could be
possible. We show that for random operators with point interactions, the following alternative holds: a point is either an
eigenvalue for all 𝜔 or only for a set of 𝜔’s of measure zero. This will be a consequence of the fact that a similar behavior
for seladjoint extensions of symmetric operators with defect indices (1,1) takes place. To decide which of these situations
happens we were able to use classical oscillation theory, exploiting the relation between the zeros of eigenfunctions and
the placement of the points interactions.
This work is organized as follows. In Section 2 we consider rank one singular perturbations defined as selfadjoint exten-

sions of symmetric operators with deficiency indices (1,1). It is shown that eigenvalues of these selfadjoint extensions
either disappear or remain fixed for every extension. Section 3 deals with singular rank one perturbations generated by
delta functionals, we introduce the basic facts that will be used in the next section. In Section 4 we study the random case.
Here one main result is Theorem 4.4 which gives a characterization of the 𝜔’s such that 𝐻𝜔 share an eigenvalue. Subsec-
tion 4.1 considers zeros of eigenfunctions belonging to the operator without point interactions. It is proven in particular,
that nonoscillatory behavior implies the family𝐻𝜔’s has a common eigenvalue for a set of 𝜔’s of measure zero. Analogous
results hold if the interactions are placed close enough. In subsection 4.2 measurable operators are introduced. Finally,
in Section 5 we study operators with 𝛿′-interactions and show that similar results to the ones for 𝛿 hold. Another way to
obtain the same results can be found in a previous version of this work [8].
We denote as usual byℝ,ℂ the real and complex numbers, by 𝐿1(𝐽) ∶=

{
𝑓 ∶ 𝐽 → ℂ ∶ ∫

𝐽
|𝑓| < ∞} the integrable func-

tions,𝐿1
𝑙𝑜𝑐
(𝐽) ∶=

{
𝑓 ∈ 𝐿1

(
𝐽
)
∶ 𝐽 ⊆ 𝐽, 𝐽 a closed interval

}
the local integrable functions,𝐶∞

0
(𝐽) the infinitely differentiable

functions with compact support on 𝐽 and the eigenvalues of an operator 𝐿 by 𝜎𝑝(𝐿). Given a transformation 𝑇 ∶ 𝑉1 → 𝑉2,
where 𝑉1 and 𝑉2 are vectorial spaces, we use the notation Kern(𝑇) ∶=

{
𝑣 ∈ 𝑉1 ∶ 𝑇(𝑣) = 0

}
.

2 STABILITY OF EIGENVALUES OF SINGULAR RANK ONE PERTURBATIONS

Let  be a Hilbert space, let 𝐴 ∶  →  be a selfadjoint operator with dense domain 𝐷(𝐴) and let 𝜑 ∶ 𝐷(𝐴) → ℂ be a
linear functional. Let 𝐴̇ be the restriction of 𝐴 to

𝐷
(
𝐴̇
)
∶= Kern(𝜑) = {𝜓 ∈ 𝐷(𝐴) ∶ 𝜑(𝜓) = 0}. (2.1)

Rank one perturbations are formally defined by

𝐴𝛼 = 𝐴 + 𝛼⟨𝜑, ⋅⟩𝜑
and they correspond to selfadjoint extensions of the symmetric operator 𝐴̇. See for example [2–4, 13, 17].
Our first task will be to study the stability of the eigenvalues of the operators 𝑇𝜃 to be introduced bellow. This will be the

key to understand the behavior of the eigenvalues of selfadjoint extensions of 𝐴̇. For the next result compare the brilliant
analysis done by Donoghue in [9, Section 2].
Let𝐻 ∶  →  be a symmetric operator with domain𝐷(𝐻) and defect indices (1,1). Let 𝑇𝜃 ∶  →  denote the selfad-

joint extensions of𝐻 with 0 ≤ 𝜃 < 2𝜋 which are given by von Neumann’s theory. Then we have the following alternative:
Theorem 2.1. Assume 𝐸 is an eigenvalue of 𝑇𝛽 for some 𝛽 ∈ [0, 2𝜋), then one of the following happens:

i) E is an eigenvalue of 𝑇𝜃 for all 𝜃 ∈ [0, 2𝜋).
ii) E is not an eigenvalue of 𝑇𝜃 for 𝜃 ≠ 𝛽.
Case i) holds if and only if the eigenvector associated to 𝐸 is on 𝐷(𝐻).

Proof. It will be enough to proof that if 𝑖) does not hold then 𝑖𝑖)must hold.
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Assume there exists𝛼 ∈ [0, 2𝜋) such that𝐸 ∉ 𝜎𝑝
(
𝑇𝛼
)
and suppose that𝐸 is an eigenvalue of𝑇𝛾 for some 𝛾 ≠ 𝛽.We shall

prove that this is not possible and therefore conclude that 𝛾 = 𝛽. So let us assume there exist 𝜑 ∈ 𝐷
(
𝑇𝛽
)
and 𝜓 ∈ 𝐷

(
𝑇𝛾
)

such that

𝑇𝛽𝜑 = 𝐸𝜑 and 𝑇𝛾𝜓 = 𝐸𝜓. (2.2)

From (2.2) and since 𝑇𝛽, 𝑇𝛾 ⊂ 𝐻∗ we have that 𝜑, 𝜓 ∈ Kern(𝐻∗ − 𝐸). We claim that dim(kern(𝐻∗ − 𝐸)) = 1. To see this,
let 𝑓 ∈ Kern(𝐻∗ − 𝐸) and let 𝑔 be any function in 𝐷(𝐻), then⟨(

𝑇𝛼 − 𝐸
)(
𝑇𝛼 − 𝑖

)−1
𝑓, (𝐻 + 𝑖)𝑔

⟩
=
⟨
𝑓 + (𝑖 − 𝐸)

(
𝑇𝛼 − 𝑖

)−1
𝑓, (𝐻 + 𝑖)𝑔

⟩
= ⟨𝑓, (𝐻 + 𝑖)𝑔⟩ + ⟨(𝑖 − 𝐸)(𝑇𝛼 − 𝑖)−1𝑓, (𝐻 + 𝑖)𝑔⟩
= ⟨𝑓, (𝐻 − 𝐸 + 𝐸 + 𝑖)𝑔⟩ + ⟨(𝑖 − 𝐸)(𝐻∗ − 𝑖)(𝑇𝛼 − 𝑖)−1𝑓, 𝑔⟩
= ⟨𝑓, (𝐻 − 𝐸)𝑔⟩ + ⟨𝑓, (𝐸 + 𝑖)𝑔⟩ + ⟨(𝑖 − 𝐸)𝑓, 𝑔⟩
= ⟨𝑓, (𝐻 − 𝐸)𝑔⟩
= ⟨(𝐻∗ − 𝐸)𝑓, 𝑔⟩ = 0.

Then
(
𝑇𝛼 − 𝐸

)(
𝑇𝛼 − 𝑖

)−1
∶ Kern(𝐻∗ − 𝐸) → Kern(𝐻∗ − 𝑖) is a well defined, injective and linear map. Therefore

dim(Kern(𝐻∗ − 𝐸)) = dim(Kern(𝐻∗ − 𝑖)) = 1 (2.3)

proving the claim.
From the vonNeumann’s extension theory of symmetric operators (see for example [23, Theorem 13.10] or [25, Theorem

8.12]) we have for 𝜑 and 𝜓 the following representations:

𝜑 = 𝜑0 + 𝑐1𝑢𝑖 + 𝑐1𝑒
𝑖𝛽𝑢−𝑖 ∈ 𝐷

(
𝑇𝛽
)

(2.4)

and

𝜓 = 𝜓0 + 𝑐2𝑢𝑖 + 𝑐2𝑒
𝑖𝛾𝑢−𝑖 ∈ 𝐷

(
𝑇𝛾
)

(2.5)

with 𝜑0, 𝜓0 ∈ 𝐷(𝐻), 𝑐1, 𝑐2 ∈ ℂ and 𝑢±𝑖 ∈ Kern(𝐻∗ ∓ 𝑖) . From (2.2) and (2.3) we can consider 𝜑 = 𝜓. We have

𝜑0 + 𝑐1𝑢𝑖 + 𝑐1𝑒
𝑖𝛽𝑢−𝑖 = 𝜓0 + 𝑐2𝑢𝑖 + 𝑐2𝑒

𝑖𝛾𝑢−𝑖.

Since the sums are direct then 𝜑0 = 𝜓0 and
(
𝑐1 − 𝑐2

)
𝑢𝑖 +

(
𝑐1𝑒

𝑖𝛽 − 𝑐2𝑒
𝑖𝛾
)
𝑢−𝑖 = 0. Since 𝑢𝑖 and 𝑢−𝑖 are linearly independent

𝑐1 = 𝑐2. If 𝑐1 = 𝑐2 = 0, then𝜑, 𝜓 ∈ 𝐷(𝐻) and𝜓 is an eigenvector of𝑇𝛼 with eigenvalue𝐸which contradicts our hypothesis.
If 𝑐1 = 𝑐2 ≠ 0, then 𝑒𝑖𝛽 = 𝑒𝑖𝛾. Thus 𝛽 = 𝛾 and 𝑖𝑖) holds.
If the eigenvector associated to 𝐸 is on 𝐷(𝐻) then 𝐸 is an eigenvalue of 𝑇𝜃 for all 𝜃 ∈ [0, 2𝜋), since 𝐻 ⊂ 𝑇𝜃. To see the

other direction, assume 𝐸 is an eigenvalue of 𝑇𝜃 for all 𝜃 ∈ [0, 2𝜋) and choose 𝜃0 ≠ 𝛽. Let 𝜑 as in (2.2), if 𝜑 ∉ 𝐷(𝐻), from
the representation (2.4) we have 𝑐1 ≠ 0 and then follows as above that 𝛽 = 𝜃0 which is a contradiction. Therefore if 𝐸 is
an eigenvalue of 𝑇𝜃 for all 𝜃 ∈ [0, 2𝜋) the eigenvector associated to 𝐸 is on 𝐷(𝐻). □

The next two lemmas are essentialy reformulations of [2, Lemma 2.1] or [3, Lemma 1.2.3]. They will allow us to prove
that 𝐴̇ is a densely defined symmetric operator with defect indices (1,1).
Let 𝜑 ∶ 𝐷 ⊂  → ℂ be a linear functional defined on a dense set 𝐷 of a Hilbert space.

Lemma 2.2. If 𝜑 is discontinuous in 𝐷, then Kern(𝜑) is dense in.
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Proof. Since 𝜑 is discontinuous there exists a sequence
{
𝑥𝑛
}
⊂ 𝐷 such that ‖‖𝑥𝑛‖‖ = 1 and ||𝜑(𝑥𝑛)||→∞ as 𝑛 → ∞. Take

𝑦 ∈ 𝐷 and write

𝑦 = 𝑦 −
𝜑(𝑦)

𝜑
(
𝑥𝑛
)𝑥𝑛 + 𝜑(𝑦)

𝜑
(
𝑥𝑛
)𝑥𝑛.

Suppose 𝑥 ∈ Kern(𝜑)⟂, hence since 𝑦 − 𝜑(𝑦)

𝜑(𝑥𝑛)
𝑥𝑛 ∈ Kern(𝜑) we have the inequality

|⟨𝑥, 𝑦⟩| = ||||||
⟨
𝑥,

𝜑(𝑦)

𝜑
(
𝑥𝑛
)𝑥𝑛
⟩|||||| ≤ ‖𝑥‖

|𝜑(𝑦)|||𝜑(𝑥𝑛)|| → 0 as 𝑛 → ∞.

Therefore 𝐷 ⊂ Kern(𝜑)⟂⟂ = Kern(𝜑). Since 𝐷 is dense  = 𝐷 ⊂ Kern(𝜑) and therefore Kern(𝜑) = , so Kern(𝜑) is
dense. □

For the next lemma let 𝐴, 𝐴̇ and 𝜑 be as in (2.1).

Lemma 2.3. Assume 𝜑 is discontinuous in 𝐷(𝐴) with the norm of . Let 𝑙 ∶  → ℂ be the functional defined as
𝑙(𝜓) ∶= 𝜑

(
(𝐴 + 𝑖)−1𝜓

)
. If 𝑙 is continuous on, then 𝐴̇ is a densely defined symmetric operator with deficiency indices (1,1).

Proof. From Lemma 2.2 follows that the domain 𝐷
(
𝐴̇
)
∶= Kern(𝜑) is dense. Now for 𝛾 ∈ , we have

𝑙(𝛾) = 0 ⇔ (𝐴 + 𝑖)−1𝛾 ∈ Kern(𝜑) = 𝐷
(
𝐴̇
)
⇔ 𝛾 ∈ Rang

(
𝐴̇ + 𝑖

)
.

Therefore

Kern(𝑙) = Rang
(
𝐴̇ + 𝑖

)
(2.6)

and this set is closed by the continuity of 𝑙.
Now Kern(𝑙) ≠  because if 𝑙(𝜓) = 0, for all 𝜓 ∈ , from Equation (2.6) and the basic criterion for selfadjointness we

conclude that 𝐴̇ is selfadjoint and therefore 𝐴̇ = 𝐴. That would mean that Kern(𝜑) = 𝐷(𝐴) and therefore 𝜑 continuous in
𝐷(𝐴) which is a contradiction to the hypothesis. Since 𝑙 is continuous and linear, by the Riesz lemma there exists ℎ ∈ ,
ℎ ≠ 0, such that ⟨ℎ, ⋅⟩ = 𝑙(⋅).
Taking into account that Rang

(
𝐴̇ + 𝑖

)
is closed and therefore equal to Kern

((
𝐴̇
)∗
− 𝑖
)⟂
, we have

{𝛾 ∶ ⟨ℎ, 𝛾⟩ = 0} = Kern(𝑙) = Kern
((
𝐴̇
)∗
− 𝑖
)⟂
.

It follows that

{𝑐ℎ ∶ 𝑐 ∈ ℂ} = {𝛾 ∶ ⟨ℎ, 𝛾⟩ = 0}⟂ = Kern
((
𝐴̇
)∗
− 𝑖
)
.

Therefore, dimKern
((
𝐴̇
)∗
− 𝑖
)
= 1. Since 𝐴̇ has selfadjoint extensions, the deficiency indices are equal and

dimKern
((
𝐴̇
)∗
+ 𝑖
)
= 1. □

As mentioned above, the selfadjoint extensions of 𝐴̇ give a precise meaning to the singular rank one perturbations
formally given by

𝐴𝛼 = 𝐴 + 𝛼⟨𝜑, ⋅⟩𝜑.
Then applying Lemmas 2.2 and 2.3 to 𝐴̇ and Theorem 2.1 to these extensions, we can formulate the following result:
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Theorem 2.4. A point is either eigenvalue for all the rank one singular perturbations of a given selfadjoint operator or for at
most one of them.

Remark 2.5. It can be proven that when 𝜑 ∈  the same statement is true.

3 STURM–LIOUVILLE OPERATORSWITH 𝜹-POINT INTERACTIONS

3.1 Preliminary definitions

Let −∞ ≤ 𝑎 < 𝑏 ≤∞, let 𝑉 ∈ 𝐿1
𝑙𝑜𝑐
(𝑎, 𝑏) be a real valued function. Fix a discrete set 𝑀 of points accumulating at most

at 𝑎 or 𝑏, 𝑀 ∶=
{
𝑥𝑛
}
𝑛∈𝐼

⊂ (𝑎, 𝑏) where 𝐼 ⊆ ℤ and let
{
𝛼𝑛
}
⊂ ℝ. We set 𝛼 = 𝛼𝑛0 and consider the formal differential

expressions

𝜏 ∶= −
𝑑2

𝑑𝑥2
+ 𝑉, (3.1)

𝜏𝛼,𝑀 ∶= −
𝑑2

𝑑𝑥2
+ 𝑉(𝑥) +

∑
𝑛∈𝐼∖{𝑛0}

𝛼𝑛𝛿
(
𝑥 − 𝑥𝑛

)
+ 𝛼𝛿

(
𝑥 − 𝑥𝑛0

)
.

The maximal operator 𝑇𝛼,𝑀 corresponding to 𝜏𝛼,𝑀 is defined by

𝑇𝛼,𝑀𝑓 = 𝜏𝑓,

𝐷
(
𝑇𝛼,𝑀

)
=
{
𝑓 ∈ 𝐿2(𝑎, 𝑏) ∶ 𝑓, 𝑓′ abs. cont. in (𝑎, 𝑏)∖𝑀,−𝑓′′ + 𝑉𝑓 ∈ 𝐿2(𝑎, 𝑏),

𝑓
(
𝑥𝑛 +

)
= 𝑓
(
𝑥𝑛 −

)
, 𝑓′
(
𝑥𝑛 +

)
− 𝑓′

(
𝑥𝑛 −

)
= 𝛼𝑛𝑓

(
𝑥𝑛
)
, ∀𝑛 ∈ 𝐼

}
.

We make the next definitions following [5].

Definition 3.1. Given 𝑔 ∈ 𝐿1
𝑙𝑜𝑐
(𝑎, 𝑏) and 𝑧 ∈ ℂ, we call 𝑓 a solution of

(
𝜏𝛼,𝑀 − 𝑧

)
𝑓 = 𝑔 if 𝑓 and 𝑓′ are absolutely contin-

uous in (𝑎, 𝑏)∖𝑀 with −𝑓′′ + 𝑉𝑓 − 𝑧𝑓 = 𝑔 and 𝑓
(
𝑥𝑛 +

)
= 𝑓
(
𝑥𝑛 −

)
, 𝑓′
(
𝑥𝑛 +

)
− 𝑓′

(
𝑥𝑛 −

)
= 𝛼𝑛𝑓

(
𝑥𝑛
)
, for all𝑛 ∈ 𝐼.

Definition 3.2. We define theWronskian of two solutions 𝑢1 and 𝑢2 of
(
𝜏𝛼,𝑀 − 𝑧

)
𝑓 = 0 as

𝑊𝑥

(
𝑢1, 𝑢2

)
= 𝑢1(𝑥+)𝑢

′
2
(𝑥+) − 𝑢′

1
(𝑥+)𝑢2(𝑥+).

Note that the Wronskian is constant in (𝑎, 𝑏), see [5, Lemma 4.2].

Definition 3.3. For 𝑓, 𝑔 ∈ 𝐷
(
𝑇𝛼,𝑀

)
we define the Lagrange bracket by

[𝑓, 𝑔]𝑥 = 𝑓(𝑥+)𝑔
′(𝑥+) − 𝑓′(𝑥+)𝑔(𝑥+).

The limits [𝑓, 𝑔]𝑎 = lim𝑥→𝑎+[𝑓, 𝑔]𝑥 and [𝑓, 𝑔]𝑏 = lim𝑥→𝑏−[𝑓, 𝑔]𝑥 exist. See [5, Theorem 2.2].
A solution of

(
𝜏𝛼,𝑀 − 𝑧

)
𝑓 = 0 is said to lie right (left) in 𝐿2(𝑎, 𝑏), if 𝑓 is square integrable in a neighborhood of 𝑏 (𝑎).

Definition 3.4.

i) 𝜏𝛼,𝑀 is in the limit circle case (lcc) at 𝑏 if for every 𝑧 ∈ ℂ all solutions of
(
𝜏𝛼,𝑀 − 𝑧

)
𝑓 = 0 lie right in 𝐿2(𝑎, 𝑏).

ii) 𝜏𝛼,𝑀 is in the limit point case (lpc) at 𝑏 if for every 𝑧 ∈ ℂ there is at least one solution of
(
𝜏𝛼,𝑀 − 𝑧

)
𝑓 = 0 not lying right

in 𝐿2(𝑎, 𝑏).

The same definition applies to the endpoint 𝑎.
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According to the Weyl Alternative, see [5, Theorem 4.4], we have always either 𝑖) or 𝑖𝑖).
Consider the selfadjoint restriction𝐻𝛼,𝑀 of 𝑇𝛼,𝑀 in 𝐿2(𝑎, 𝑏) defined as

𝐻𝛼,𝑀𝑓 = 𝜏𝑓 (3.2)

𝐷(𝐻𝛼,𝑀) =

{
𝑓 ∈ 𝐷

(
𝑇𝛼,𝑀

)
∶
[𝑣, 𝑓]𝑎 = 0 if 𝜏𝛼,𝑀 lcc at 𝑎,
[𝑤, 𝑓]𝑏 = 0 if 𝜏𝛼,𝑀 lcc at 𝑏

}
.

Where 𝑣 and 𝑤 are non-trivial real solutions of
(
𝜏𝛼,𝑀 − 𝜆

)
𝑣 = 0 near 𝑎 and near 𝑏 respectively, 𝜆 ∈ ℝ. See [5, Theorem

5.2].
For the next definition we take 𝛼 = 0.

Definition 3.5. Let us define the Green’s function 𝐺(𝑥, 𝑦; 𝑧) for𝐻0,𝑀 as

𝐺(𝑥, 𝑦; 𝑧) ∶=

{
𝑊
(
𝑢𝑏, 𝑢𝑎

)−1
𝑢𝑎(𝑥, 𝑧)𝑢𝑏(𝑦, 𝑧) if 𝑥 ≤ 𝑦,

𝑊
(
𝑢𝑏, 𝑢𝑎

)−1
𝑢𝑏(𝑥, 𝑧)𝑢𝑎(𝑦, 𝑧) if 𝑥 > 𝑦,

(3.3)

where 𝑢𝑎 and 𝑢𝑏 are solutions of
(
𝜏0,𝑀 − 𝑧

)
𝑢 = 0 (see Definition 3.1) with

[
𝑣, 𝑢𝑎

]
𝑎
= 0 if 𝜏0,𝑀 lcc at 𝑎 and

[
𝑤, 𝑢𝑏

]
𝑏
= 0 if

𝜏0,𝑀 lcc at 𝑏.

According to [5, Theorem 5.2 b)] we have

((
𝐻0,𝑀 − 𝑧

)−1
𝑔
)
(𝑥) = ∫

𝑏

𝑎

𝐺(𝑥, 𝑦; 𝑧)𝑔(𝑦) 𝑑𝑦. (3.4)

Definition 3.6. We say 𝜏𝛼,𝑀 is regular at 𝑎 if 𝑎 is finite,𝑉 ∈ 𝐿1
𝑙𝑜𝑐
[𝑎, 𝑏) and 𝑎 is not an accumulation point of𝑀. The same

definition applies to the endpoint 𝑏.

If 𝜏𝛼,𝑀 is regular at 𝑎, then 𝜏𝛼,𝑀 is lcc at 𝑎 and the condition [𝑣, 𝑓]𝑎 = 0 can be replaced by

𝑓(𝑎) cos 𝜓 + 𝑓′(𝑎) sin 𝜓 = 0

for 𝜓 ∈ [0, 𝜋). The same holds for 𝑏.

3.2 Behavior of the eigenvalues of operators with 𝜹-point interactions

Let us take from now on 𝜑 ∶ 𝐷
(
𝐻0,𝑀

)
→ ℂ given by 𝜑(𝑓) ∶= 𝛿𝑥𝑛0 (𝑓) = 𝑓

(
𝑥𝑛0
)
.

Lemma 3.7.

i) The functional 𝜑 is not continuous in 𝐷
(
𝐻0,𝑀

)
with the norm of 𝐿2(𝑎, 𝑏).

ii) The functional 𝑙 ∶ 𝐿2(𝑎, 𝑏) → ℂ defined as 𝑙(𝑓) ∶= 𝜑
((
𝐻0,𝑀 + 𝑖

)−1
𝑓
)
is continuous.

Proof.

i) Take 𝜖 > 0 such that 𝐼𝜖 ∩ 𝑀 =
{
𝑥𝑛0
}
, where 𝐼𝜖 =

[
𝑥𝑛0 − 𝜖, 𝑥𝑛0 + 𝜖

]
. Let 𝐹 ∈ 𝐶∞

0
(−𝜖, 𝜖) such that 𝐹(0) = 1

and 0 ≤ 𝐹(𝑥) ≤ 1. Let 𝑓𝑛(𝑥) ∶= 𝐹
(
𝑛
(
𝑥 − 𝑥𝑛0

))
if 𝑥 ∈

(
𝑥𝑛0 −

𝜖

𝑛
, 𝑥𝑛0 +

𝜖

𝑛

)
and 𝑓𝑛(𝑥) ∶= 0 if

𝑥 ∈ (𝑎, 𝑏)∖
(
𝑥𝑛0 −

𝜖

𝑛
, 𝑥𝑛0 +

𝜖

𝑛

)
. Then 𝑓𝑛 ∈ 𝐷

(
𝐻0,𝑀

)
and

‖𝑓𝑛‖2 = ∫
𝑏

𝑎

𝑓2𝑛(𝑥) 𝑑𝑥 ≤ ∫
𝑏

𝑎

𝑓𝑛(𝑥) 𝑑𝑥 = ∫
𝑥𝑛0+

𝜖

𝑛

𝑥𝑛0−
𝜖

𝑛

𝐹
(
𝑛
(
𝑥 − 𝑥𝑛0

))
𝑑𝑥 = ∫

𝜖

−𝜖

𝐹(𝑦)

𝑛
𝑑𝑦 =

1

𝑛 ∫
𝜖

−𝜖

𝐹(𝑦) 𝑑𝑦⟶ 0
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as 𝑛 → ∞. Then 𝜑 is not bounded because if it were, we would have

1 = ||𝑓𝑛(𝑥𝑛0)|| ≤ 𝐶‖𝑓𝑛‖⟶0 as 𝑛 → ∞

getting a contradiction.
ii) Let 𝐺(𝑥, 𝑦; 𝑧) be the Green’s function defined in Definition 3.5, then

((
𝐻0,𝑀 − 𝑖

)−1
𝑓
)
(𝑥) = ∫

𝑏

𝑎

𝐺(𝑥, 𝑦; 𝑖)𝑓(𝑦) 𝑑𝑦.

Hence

|𝑙(𝑓)| = ||||
((
𝐻0,𝑀 − 𝑖

)−1
𝑓
)(
𝑥𝑛0
)|||| =

|||||∫
𝑏

𝑎

𝐺
(
𝑥𝑛0 , 𝑦; 𝑖

)
𝑓(𝑦) 𝑑𝑦

||||| ≤ ‖‖𝐺
(
𝑥𝑛0 , ⋅ ; 𝑖

)‖‖ ‖𝑓‖.
□

Let 𝐻̇0,𝑀 = 𝐻0,𝑀|𝐷𝜑 be the restriction of𝐻0,𝑀 to

𝐷𝜑 ∶=
{
𝑓 ∈ 𝐷

(
𝐻0,𝑀

)
∶ 𝜑(𝑓) = 𝑓

(
𝑥𝑛0
)
= 0
}
. (3.5)

From Lemmas 2.2, 2.3 and 3.7, we have that 𝐻̇0,𝑀 is a symmetric operator with defect indices (1,1). By the von Neumann
theory, the selfadjoint extensions 𝑇𝜃 of the symmetric operator 𝐻̇0,𝑀 are given by

𝐷(𝑇𝜃) =
{
𝑔 + 𝑐𝜓+ + 𝑐𝑒

𝑖𝜃𝜓− ∶ 𝑐 ∈ ℂ, 𝑔 ∈ 𝐷
(
𝐻̇0,𝑀

)}
,

𝑇𝜃
(
𝑔 + 𝑐𝜓+ + 𝑐𝑒

𝑖𝜃𝜓−
)
= 𝐻̇0,𝑀 𝑔 + 𝑖𝑐𝜓+ − 𝑖𝑐𝑒

𝑖𝜃𝜓−

for 𝜃 ∈ [0, 2𝜋), where 𝜓± ∈ Kern
(
𝐻̇∗
0,𝑀

∓ 𝑖
)
.

Lemma 3.8. The functions 𝜓± introduced above can be chosen as

𝜓± = 𝐺
(
𝑥𝑛0 , ⋅ ; ∓𝑖

)
.

Proof. From (3.4), we get

𝜑
((
𝐻0,𝑀 + 𝑖

)−1
𝑔
)
= ∫

𝑏

𝑎

𝐺
(
𝑥𝑛0 , 𝑦; 𝑖

)
𝑔(𝑦) 𝑑𝑦 = ∫

𝑏

𝑎

𝐺
(
𝑥𝑛0 , 𝑦; −𝑖

)
𝑔(𝑦) 𝑑𝑦 =

⟨
𝐺
(
𝑥𝑛0 , ⋅ ; −𝑖

)
, 𝑔
⟩
.

Now for 𝑔 ∈ 𝐷
(
𝐻̇0,𝑀

)
= 𝐷𝜑,

⟨
𝐺
(
𝑥𝑛0 , ⋅ ; −𝑖

)
,
(
𝐻̇0,𝑀 + 𝑖

)
𝑔
⟩
= 𝜑
((
𝐻0,𝑀 + 𝑖

)−1(
𝐻̇0,𝑀 + 𝑖

)
𝑔
)
= 𝜑(𝑔) = 0.

Therefore 𝐺
(
𝑥𝑛0 , ⋅ ; −𝑖

)
∈ Rang

(
𝐻̇0,𝑀 + 𝑖

)⟂
= Kern

(
𝐻̇∗
0,𝑀

− 𝑖
)
and analogously 𝐺

(
𝑥𝑛0 , ⋅ ; 𝑖

)
∈ Kern

(
𝐻̇∗
0,𝑀

+ 𝑖
)
. □

Theorem 3.9. Let 𝑇𝜃 be a selfadjoint extension of 𝐻̇0,𝑀 , then there exists a unique 𝛼 ∈ ℝ ∪ {∞} such that 𝑇𝜃 = 𝐻𝛼,𝑀 . Con-
versely, given 𝛼 ∈ ℝ ∪ {∞} there exists a unique 𝜃 ∈ [0, 2𝜋) such that 𝑇𝜃 = 𝐻𝛼,𝑀 .

Proof. We shall prove that given 𝜃 ∈ [0, 2𝜋), there exists 𝛼 ∈ ℝ ∪ {∞}, and given 𝛼 there exists 𝜃, such that 𝑇𝜃 ⊂ 𝐻𝛼,𝑀 and
since 𝑇𝜃 and𝐻𝛼,𝑀 are selfadjoint, the result will follow.
Let us first show that 𝐷(𝑇𝜃) ⊂ 𝐷

(
𝐻𝛼,𝑀

)
. If 𝑓 ∈ 𝐷(𝑇𝜃), using the representation 𝑓 = 𝑔 + 𝑐𝜓+ + 𝑐𝑒𝑖𝜃𝜓− and the explicit

form for 𝜓± given in Lemma 3.8, from the properties of 𝑢𝑎 and 𝑢𝑏 as solutions of
(
𝜏0,𝑀 ± 𝑖

)
= 0we get that 𝑓 is continuous

in (𝑎, 𝑏) and 𝐷(𝑇𝜃) ⊂
{
𝑓 ∈ 𝐿2(𝑎, 𝑏) ∶ 𝑓, 𝑓′ abs. cont. in (𝑎, 𝑏)∖𝑀,−𝑓′′ + 𝑉𝑓 ∈ 𝐿2(𝑎, 𝑏)

}
.
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Let us consider 𝑥𝑛 ∈ 𝑀∖
{
𝑥𝑛0
}
. If 𝑓 ∈ 𝐷(𝑇𝜃) then

𝑓′
(
𝑥𝑛 +

)
− 𝑓′

(
𝑥𝑛 −

)
= 𝛼𝑛𝑓

(
𝑥𝑛
)
. (3.6)

To see this assume 𝑥𝑛 < 𝑥𝑛0 then for 𝑥𝑛 ∈ 𝑀∖
{
𝑥𝑛0
}
and using (3.3)

𝜓′∓
(
𝑥𝑛 +

)
− 𝜓′∓

(
𝑥𝑛 −

)
= 𝐺′

(
𝑥𝑛0 , 𝑥𝑛+;±𝑖

)
− 𝐺′

(
𝑥𝑛0 , 𝑥𝑛−;±𝑖

)
= 𝑊−1𝑢𝑏

(
𝑥𝑛0 , ±𝑖

)(
𝑢′𝑎
(
𝑥𝑛+,±𝑖

)
− 𝑢′𝑎

(
𝑥𝑛−,±𝑖

))
= 𝛼𝑛𝑊

−1𝑢𝑏
(
𝑥𝑛0 , ±𝑖

)
𝑢𝑎
(
𝑥𝑛, ±𝑖

)
= 𝛼𝑛𝐺

(
𝑥𝑛0 , 𝑥𝑛; ±𝑖

)
and analogously if 𝑥𝑛 > 𝑥𝑛0 . From this it follows that every element of 𝐷(𝑇𝜃) satisfies (3.6).
Observe that for some 𝜃0 ∈ [0, 2𝜋),𝐻0,𝑀 = 𝑇𝜃, with

𝐷
(
𝑇𝜃0
)
=
{
𝑔 + 𝑐𝜓+ + 𝑐𝑒

𝑖𝜃0𝜓− ∶ 𝑐 ∈ ℂ, 𝑔 ∈ 𝐷
(
𝐻̇0,𝑀

)}
.

If 𝜓+
(
𝑥𝑛0
)
= 0, then 𝜓−

(
𝑥𝑛0
)
= 𝜓+

(
𝑥𝑛0
)
= 0 and 𝐷

(
𝑇𝜃0
)
= 𝐷
(
𝐻0,𝑀

)
= 𝐷
(
𝐻̇0,𝑀

)
which is impossible since 𝐻̇0,𝑀 is not

selfadjoint. Hence 𝜓+
(
𝑥𝑛0
) ≠ 0.

Now we will prove that if 𝑓 ∈ 𝐷(𝑇𝜃), then

𝑓′
(
𝑥𝑛0 +

)
− 𝑓′

(
𝑥𝑛0 −

)
= 𝛼𝑓

(
𝑥𝑛0
)

(3.7)

for some 𝛼 ∈ ℝ. Assume that
(
𝑔 + 𝑐𝜓+ + 𝑐𝑒

𝑖𝜃𝜓−
)(
𝑥𝑛0
) ≠ 0. Let 𝛼 ∈ ℂ be such that

(
𝑔 + 𝑐𝜓+ + 𝑐𝑒

𝑖𝜃𝜓−
)′(
𝑥𝑛0 +

)
−
(
𝑔 + 𝑐𝜓+ + 𝑐𝑒

𝑖𝜃𝜓−
)′(
𝑥𝑛0 −

)
= 𝛼
(
𝑔 + 𝑐𝜓+ + 𝑐𝑒

𝑖𝜃𝜓−
)(
𝑥𝑛0
)
. (3.8)

Let us verify that 𝛼 does not depend on 𝑔 or 𝑐 and 𝛼 ∈ ℝ. By definition of 𝐷
(
𝐻̇0,𝑀

)
, we have 𝑔′

(
𝑥𝑛0 +

)
= 𝑔′
(
𝑥𝑛0 −

)
and

𝑔
(
𝑥𝑛0
)
= 0, therefore the equality (3.8) becomes

𝑐
(
𝜓+ + 𝑒

𝑖𝜃𝜓−
)′(
𝑥𝑛0 +

)
− 𝑐
(
𝜓+ + 𝑒

𝑖𝜃𝜓−
)′(
𝑥𝑛0 −

)
= 𝑐𝛼

(
𝜓+ + 𝑒

𝑖𝜃𝜓−
)(
𝑥𝑛0
)

and

𝛼 =

(
𝜓+ + 𝑒

𝑖𝜃𝜓−
)′(
𝑥𝑛0 +

)
−
(
𝜓+ + 𝑒

𝑖𝜃𝜓−
)′(
𝑥𝑛0 −

)(
𝜓+ + 𝑒𝑖𝜃𝜓−

)(
𝑥𝑛0
) .

In fact, using the explicit form 𝜓± = 𝐺
(
𝑥𝑛0 , ⋅ ; ∓𝑖

)
we get

𝛼 = −
1 + 𝑒𝑖𝜃

𝜓+
(
𝑥𝑛0
)
+ 𝑒𝑖𝜃𝜓+

(
𝑥𝑛0
) .

Note that 𝜓−
(
𝑥𝑛0
)
= 𝜓+

(
𝑥𝑛0
)
, where 𝑧 denotes the complex conjugate of 𝑧. Since 𝛼 = 𝛼 we get 𝛼 ∈ ℝ.

For the other direction, if we are given 𝛼 ∈ ℝ, then we take 𝜃 ∈ [0, 2𝜋) such that

−
1 + 𝛼𝜓+

(
𝑥𝑛0
)

1 + 𝛼𝜓+
(
𝑥𝑛0
) = 𝑒𝑖𝜃 (3.9)

and reversing the argument above we get Equation (3.8). Then we have 𝐷(𝑇𝜃) ⊂ 𝐷
(
𝑇𝛼,𝑀

)
.

The case
(
𝑔 + 𝑐𝜓+ + 𝑐𝑒

𝑖𝜃𝜓−
)(
𝑥𝑛0
)
= 0 happens when 𝜃 is such that

𝑒𝑖𝜃 = −
𝜓+
(
𝑥𝑛0
)

𝜓−
(
𝑥𝑛0
)
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so this corresponds to taking the limit 𝛼 → ∞ in formula (3.9).
Since 𝑢𝑎, 𝑢𝑏 and 𝑔 satisfy the condition [𝑣, 𝑓]𝑎 = [𝑤, 𝑓]𝑏 = 0, then these conditions are satisfied for all 𝑓 ∈ 𝐷(𝑇𝜃),

where 𝑣, 𝑤 are solutions of
(
𝜏0,𝑀 − 𝜆

)
𝑢 = 0, 𝜆 ∈ ℝ, near 𝑎 and near 𝑏 respectively. Since we can construct solutions of(

𝜏𝛼,𝑀 − 𝜆
)
𝑢 = 0which coincidewith 𝑣 and𝑤 near a and b respectively, then𝑓 ∈ 𝐷(𝑇𝜃) satisfies also the conditions needed

in the lcc for𝐻𝛼,𝑀 . Then 𝐷(𝑇𝜃) ⊂ 𝐷
(
𝐻𝛼,𝑀

)
.

Now, we claim that

𝑇𝜃𝑓 = 𝐻𝛼,𝑀𝑓 = 𝜏𝛼,𝑀𝑓, for all 𝑓 ∈ 𝐷(𝑇𝜃). (3.10)

Since 𝑓 ∈ 𝐷(𝑇𝜃), it has the representation 𝑓 = 𝑔 + 𝑐𝜓+ + 𝑐𝑒𝑖𝜃 and 𝑇𝜃𝑓 = 𝐻̇0,𝑀𝑔 + 𝑖𝑐𝜓+ − 𝑖𝑐𝑒𝑖𝜃𝜓−. By definition of 𝑢𝑎 and
𝑢𝑏 we have (

𝜏𝛼,𝑀 − 𝑖
)
𝜓+(𝑦) =

(
𝜏𝛼,𝑀 − 𝑖

)
𝑢𝑎
(
𝑥𝑛0
)
𝑢𝑏(𝑦) = 0, 𝑦 ≥ 𝑥𝑛0 ,(

𝜏𝛼,𝑀 − 𝑖
)
𝜓+(𝑦) =

(
𝜏𝛼,𝑀 − 𝑖

)
𝑢𝑏
(
𝑥𝑛0
)
𝑢𝑎(𝑦) = 0, 𝑦 < 𝑥𝑛0 .

And 𝜏𝛼,𝑀𝜓+ = 𝑖𝜓+ = 𝐻̇∗0,𝑀𝜓+, analogously for𝜓−. Moreover, 𝐻̇0,𝑀𝑔 = 𝜏0,𝑀𝑔 = 𝜏𝛼,𝑀𝑔, for all 𝛼 ∈ ℝ, since 𝑔
′ is continuous

at 𝑥𝑛0 and 𝑔
(
𝑥𝑛0
)
= 0, therefore the claim (3.10) follows.

We have proved that 𝑇𝜃 ⊂ 𝐻𝛼,𝑀 . The selfadjointness implies 𝑇𝜃 = 𝐻𝛼,𝑀 .
Since 𝐷(𝑇𝜃) ≠ 𝐷(𝑇𝜃′) and 𝐷(𝐻𝛼,𝑀) ≠ 𝐷(𝐻𝛼′,𝑀), for 𝜃 ≠ 𝜃′ and 𝛼 ≠ 𝛼′, then for 𝛼 there corresponds a unique 𝜃 and

conversely. □

Remark 3.10. Note that 𝛼 = 0 corresponds to 𝜃 = 𝜋, that is 𝑇𝜋 = 𝐻0,𝑀 .

Remark 3.11. Note that in the case that 𝜃 corresponds to 𝛼 = ∞ it happens that 𝐷(𝑇𝜃) = Kern(𝜑̃), where 𝜑̃ ∶ 𝐷(𝑇𝜃) → ℂ,
𝜑̃(𝑓) = 𝑓

(
𝑥𝑛0
)
. This does not conflict with Lemma 2.3 because in this case 𝜑̃ is continuous in 𝐷(𝑇𝜃).

Using the above results we can prove the following statement, which is analogous to Theorem 2.4.

Theorem 3.12. Let 𝐸 ∈ ℝ be fixed. Then for the set

𝐴(𝐸) ∶=
{
𝛼 ∈ ℝ ∶ 𝐸 ∈ 𝜎𝑝

(
𝐻𝛼,𝑀

)}
there are two possibilities:

i) 𝐴(𝐸) = ℝ.
ii) 𝐴(𝐸) has at most one element.

Proof. Suppose 𝑖) does not hold, then there exists 𝛼 ∈ ℝ such that 𝛼 ∉ 𝐴(𝐸). From Theorem 3.9, there exists 𝜃 ∈ [0, 2𝜋)
such that 𝑇𝜃 = 𝐻𝛼,𝑀 , where 𝑇𝜃 is a selfadjoint extension of 𝐻̇0,𝑀 . Since 𝐸 is not an eigenvalue of 𝑇𝜃, we are in case 𝑖𝑖) of
Theorem 2.1 and 𝐸 is an eigenvalue of 𝑇𝜃0 for at most one 𝜃0 ∈ [0, 2𝜋) and therefore 𝐸 is an eigenvalue of 𝐻𝛼0,𝑀 for at
most one 𝛼0 ∈ ℝ. □

Remark 3.13. FromTheorem 2.1, case 𝑖)happens if and only if the eigenvector associated to the eigenvalue𝐸 is on𝐷
(
𝐻̇0,𝑀

)
.

4 RANDOM STURM–LIOUVILLE OPERATORSWITH 𝜹-POINT INTERACTIONS

In this section we use the previously obtained results to study the random case. First the probability space Ω where the
sequences of coupling constants live is constructed and then our random operators are defined.
The space of real valued sequences

{
𝜔𝑛
}
𝑛∈𝐼

, where 𝐼 ⊆ ℤ, will be denoted by ℝ𝐼 . We introduce a measure in ℝ𝐼 in
the following way. Let

{
𝑝𝑛
}
𝑛∈𝐼

be a sequence of continuous probability measures in ℝ (𝑝𝑛({𝑟}) = 0 for any 𝑟 ∈ ℝ) and
consider the product measureℙ = ×𝑛∈𝐼𝑝𝑛 defined on the product 𝜎-algebra ofℝ𝐼 generated by the cylinder sets, that is,
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by the sets of the form
{
𝜔 ∶ 𝜔

(
𝑖1
)
∈ 𝐴1,… , 𝜔

(
𝑖𝑛
)
∈ 𝐴𝑛

}
for 𝑖1, … , 𝑖𝑛 ∈ 𝐼, where 𝐴1,… ,𝐴𝑛 are Borel sets inℝ. In this way

a measure space Ω̃ =
(
ℝ𝐼, , ℙ) is constructed. We consider then the completion of this space (subsets of sets of measure

zero are measurable) Ω̃which will be denoted by Ω. See Chapter 1, Section 1 in [20].
Let−∞ ≤ 𝑎 < 𝑏 ≤∞, let𝑉 ∈ 𝐿1

𝑙𝑜𝑐
(𝑎, 𝑏) be a real valued function. Fix a discrete set𝑀 ∶=

{
𝑥𝑛
}
𝑛∈𝐼

⊂ (𝑎, 𝑏)where 𝐼 ⊆ ℤ
and let 𝜔 = {𝜔(𝑛)}𝑛∈𝐼 ∈ Ω. Consider the formal differential expression

𝜏𝜔 ∶= −
𝑑2

𝑑𝑥2
+ 𝑉(𝑥) +

∑
𝑛∈𝐼

𝜔(𝑛)𝛿
(
𝑥 − 𝑥𝑛

)
.

The maximal operator 𝑇𝜔 corresponding to 𝜏𝜔 is defined as before by

𝑇𝜔𝑓 = 𝜏𝑓,

𝐷(𝑇𝜔) =
{
𝑓 ∈ 𝐿2(𝑎, 𝑏) ∶ 𝑓, 𝑓′ abs. cont. in (𝑎, 𝑏)∖𝑀,−𝑓′′ + 𝑉𝑓 ∈ 𝐿2(𝑎, 𝑏),

𝑓
(
𝑥𝑛 +

)
= 𝑓
(
𝑥𝑛 −

)
, 𝑓′
(
𝑥𝑛 +

)
− 𝑓′

(
𝑥𝑛 −

)
= 𝜔(𝑛)𝑓(𝑥𝑛), for all 𝑛 ∈ 𝐼

}
.

Assume the limit point occurs at 𝑎 or that 𝜏𝜔 is regular at 𝑎 (see Definition 3.6) and the same possibilities for 𝑏.
For 𝜃, 𝛾 ∈ [0, 𝜋) fixed, let𝐻𝜃,𝛾𝜔 be the selfadjoint restriction of 𝑇𝜔 defined as

𝐻
𝜃,𝛾
𝜔 𝑓 = 𝜏𝑓, (4.1)

𝐷
(
𝐻
𝜃,𝛾
𝜔

)
=

{
𝑓 ∈ 𝐷

(
𝑇𝜔
)
∶
𝑓(𝑎) cos 𝜃 + 𝑓′(𝑎) sin 𝜃 = 0 in case 𝜏𝜔 regular at 𝑎,
𝑓(𝑏) cos 𝛾 + 𝑓′(𝑏) sin 𝛾 = 0 in case 𝜏𝜔 regular at 𝑎

}
.

Notice that the index 𝜃 or 𝛾 are meaningless if 𝜏𝜔 is lpc at 𝑎 or 𝑏.
In what follows instead of𝐻𝜃,𝛾𝜔 we shall write𝐻𝜔.

Remark 4.1. One example where 𝜏𝜔 is lpc at both ends for all 𝜔 ∈ Ω was given in Theorem 1 [6]. There it was required
that 𝐼 = ℤ, 𝑉 bounded and inf𝑛∈ℤ |𝑥𝑛+1 − 𝑥𝑛| > 0.
The condition inf |𝑥𝑛+1 − 𝑥𝑛| > 0 can be significantly relaxed. Or one can assume some sort of semiboundedness

instead. See [1, 10 18] and [19].

Definition 4.2. For any 𝐸 ∈ ℝ, we define

𝐴(𝐸) ∶=
{
𝜔 ∈ Ω ∶ 𝐸 ∈ 𝜎𝑝

(
𝐻𝜔
)}
. (4.2)

For any measurable 𝐵 ⊆ 𝐴(𝐸) and any 𝑛 ∈ 𝐼, define

𝑄𝑛,𝐸 ∶=
{
𝜔 ∈ 𝐵 |∃𝑢𝜔 ∈ 𝐷(𝐻𝜔), 𝐻𝜔𝑢𝜔 = 𝐸𝑢𝜔 and𝑢𝜔

(
𝑥𝑛
) ≠ 0}. (4.3)

Lemma 4.3. 𝑄𝑛,𝐸 is measurable and ℙ
(
𝑄𝑛,𝐸

)
= 0.

Proof. Let

𝜒𝐵(𝜔) =

{
1 if 𝜔 ∈ 𝐵,
0 if 𝜔 ∉ 𝐵.

If 𝜔 ∈ 𝑄𝑛,𝐸 , then from the definition of 𝑄𝑛,𝐸 it follows 𝜒𝐵(𝜔) = 1.
Let 𝑓 ∶ ℝ𝐼∖{𝑛} → [0,∞).

𝑓(𝜔̃) ∶= ∫
ℝ

𝜒𝐵(𝜔) 𝑑𝑝𝑛(𝜔(𝑛))
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where 𝜔̃ =
∑
𝑘∈𝐼∖{𝑛}

𝜔(𝑘)𝑒(𝑘). Here 𝑒(𝑘) =
(
𝑒𝑚
)
𝑚∈𝐼

are the canonical vectors with entries 𝑒𝑚 = 0 if 𝑘 ≠ 𝑚 and 𝑒𝑘 = 1. The
measurability of 𝑓 follows from Fubini’s theorem. (See Theorem 7.8 [22].)
If 𝜔 =

∑
𝑘∈𝐼
𝜔(𝑘)𝑒(𝑘) ∈ 𝑄𝑛,𝐸 then 𝑓(𝜔̃) = 0, where 𝜔̃ =

∑
𝑘∈𝐼∖{𝑛}

𝜔(𝑘)𝑒(𝑘), since 𝑝𝑛 is continuous and from Theo-
rem 3.12.
Hence 𝑄𝑛,𝐸 ⊆

[
𝑓−1({0}) × ℝ

]
∩ 𝐵.

Now, using Fubini,

∫
𝑓−1({0})×ℝ

𝜒𝐵(𝜔) 𝑑ℙ = ∫
𝑓−1({0})

𝑑ℙ(𝜔̃)∫
ℝ

𝜒𝐵(𝜔) 𝑑𝑝𝑛(𝜔(𝑛)) = ∫
𝑓−1({0})

𝑓(𝜔̃) 𝑑ℙ(𝜔̃) = 0.

Then,

∫
[𝑓−1({0})×ℝ]∩𝐵

𝜒𝐵(𝜔) 𝑑ℙ = 0

and since 𝜒𝐵(𝜔) = 1 in 𝐵, then ℙ
([
𝑓−1({0}) × ℝ

]
∩ 𝐵
)
= 0.

Since the measure 𝑑ℙ is complete, then any subset of a measurable set of measure zero is measurable with measure
zero. Therefore 𝑄𝑛,𝐸 is measurable. □

Theorem 4.4. Let 𝐸 ∈ ℝ be fixed and let 𝐵 be any measurable subset of 𝐴(𝐸). Then one of the following options hold:

i) ℙ(𝐵) = 0,
ii) 𝐴(𝐸) = Ω.

Proof. It will be enough to proof that if 𝑖𝑖) doesn’t hold then 𝑖)must hold.
Assume then that there exists 𝜔0 ∈ Ω such that 𝐸 is not eigenvalue of 𝐻𝜔0 . If 𝐸 is not eigenvalue of 𝐻𝜔, for all 𝜔 ∈ Ω,

then ℙ(𝐵) = 0 and the result follows.
Suppose now 𝜔 ∈ 𝐵, then 𝐸 ∈ 𝜎𝑝

(
𝐻𝜔
)
, i.e. there exists 𝑢𝜔 ∈ 𝐷

(
𝐻𝜔
)
such that 𝐻𝜔𝑢𝜔 = 𝐸𝑢𝜔. Then 𝜔 ∈ 𝑄𝑛,𝐸 , for some

𝑛 ∈ 𝐼. This follows because if 𝑢𝜔
(
𝑥𝑛
)
= 0 for all 𝑛 ∈ 𝐼, then from the definition of 𝐻𝜔, 𝐸 must be an eigenvalue of 𝐻𝜔0 .

Therefore

𝐵 ⊂
⋃
𝑛∈𝐼

𝑄𝑛,𝐸.

Using Lemma 4.3, then ℙ
(⋃

𝑛∈𝐼
𝑄𝑛
)
= 0, therefore the result follows. □

For the next corollary we denote by𝐻 the operator𝐻𝜔 defined in (4.1) with𝜔(𝑛) = 0, for all 𝑛 ∈ 𝐼. This is just the selfad-
joint operator generated by the differential expression 𝜏 in the classical Sturm–Liouville theory without point interactions.

Corollary 4.5 (cf. Theorem 3.12).

a) If 𝐸 ∉ 𝜎𝑝(𝐻) then ℙ(𝐵) = 0 for any measurable subset 𝐵 of 𝜔 ∈ Ω for which 𝐸 ∈ 𝜎𝑝
(
𝐻𝜔
)
.

b) If 𝐸 ∈ 𝜎𝑝(𝐻) with𝐻𝑢 = 𝐸𝑢, then 𝐴(𝐸) = Ω if and only if 𝑢
(
𝑥𝑛
)
= 0, for all 𝑛 ∈ 𝐼.

Proof.

a) If 𝐸 ∉ 𝜎𝑝(𝐻), then 𝜔 = (… , 0, 0, 0, … ) ∉ 𝐴(𝐸). Therefore 𝐴(𝐸) ≠ Ω and the assertion follows from Theorem 4.4.
b) Suppose 𝐸 ∈ 𝜎𝑝(𝐻) with𝐻𝑢 = 𝐸𝑢.

1. ⇐) If 𝑢
(
𝑥𝑛
)
= 0 for all 𝑛 ∈ 𝐼, then from the definition of𝐻𝜔, 𝐸 must be an eigenvalue of𝐻𝜔 with eigenvector 𝑢, for

all 𝜔 ∈ Ω.
2. ⇒) From Lemma 4.3, ℙ

(⋃
𝑛∈𝐼
𝑄𝑛,𝐸

)
= 0. Then 𝐴(𝐸) = Ω ⊈

⋃
𝑛∈𝐼

𝑄𝑛,𝐸 .
Take 𝜔̃ ∈ 𝐴(𝐸)∖

⋃
𝑛∈𝐼
𝑄𝑛,𝐸 . There exists 𝑢𝜔̃ ∈ 𝐷

(
𝐻𝜔̃
)
such that(

𝜏𝜔̃ − 𝐸
)
𝑢𝜔̃ = 0 and 𝑢𝜔̃

(
𝑥𝑛
)
= 0, for all𝑛 ∈ 𝐼.
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Therefore 𝑢′𝜔̃
(
𝑥𝑛 +

)
− 𝑢′𝜔̃

(
𝑥𝑛 −

)
= 𝜔̃(𝑛)𝑢𝜔̃

(
𝑥𝑛
)
= 0, for all 𝑛 ∈ 𝐼. Hence 𝑢′𝜔̃ is continuous in (𝑎, 𝑏) and

(𝐻 − 𝐸)𝑢𝜔̃ = 0.
Since all eigenvalues of𝐻 are simple, see Theorem 8.29 (d) [25], then 𝑢

(
𝑥𝑛
)
= 𝐶𝑢𝜔̃

(
𝑥𝑛
)
= 0, for all 𝑛 ∈ 𝐼.

Then unless 𝐸 is an eigenvalue of𝐻 and the point interactions are placed at the roots of eigenfunctions, we will have a
“small” set of operators𝐻𝜔 sharing the same eigenvalue 𝐸.
As another consequence of Theorem 4.4 we get the following corollary.

Corollary 4.6. Let
{
𝐸𝑖
}∞
𝑖=1

be a sequence of real numbers and let𝐵𝑖 bemeasurable subsets of𝐴
(
𝐸𝑖
)
. Assume there is no point

𝐸 ∈ ℝ which is eigenvalue of𝐻𝜔 for all 𝜔 ∈ Ω, then

ℙ

({
𝜔 ∈

∞⋃
𝑖=1

𝐵𝑖 ∶ {𝐸𝑖}
∞
𝑖=1 ∩ 𝜎𝑝 (𝐻𝜔) ≠ ∅

})
= 0.

Proof. By additivity of ℙ and Theorem 4.4, we have

ℙ
({
𝜔 ∈ Ω ∶ {𝐸𝑖}

∞
𝑖=1 ∩ 𝜎𝑝 (𝐻𝜔) ≠ ∅})

= ℙ

({
𝜔 ∈ Ω ∶

∞⋃
𝑖=1

[
{𝐸𝑖} ∩ 𝜎𝑝 (𝐻𝜔)

] ≠ ∅)}

= ℙ

(
∞⋃
𝑖=1

{
𝜔 ∈ Ω ∶ 𝐸𝑖 ∈ 𝜎𝑝 (𝐻𝜔)

})

≤
∞∑
𝑖=1

ℙ
({
𝜔 ∈ Ω ∶ 𝐸𝑖 ∈ 𝜎𝑝 (𝐻𝜔)

})
= 0.

□

4.1 Oscillation of solutions

We shall use results about the oscillation of solutions of second order differential expressions. The location of zeros of
eigenfunctions together with knowledge about the positions of the point interactions, will help us to understand when
option 𝑏) in Theorem 4.4 happens.
In this subsection 𝜏 is as in Equation (3.1) and 𝐴(𝐸) is as in Definition 4.2 (4.2), that is the set of 𝜔 ∈ Ω such that 𝐻𝜔

share the common eigenvalue 𝐸.

Definition 4.7 See Section XI.6 in [12]. The equation

(𝜏 − 𝐸)𝑓 = 0

is said to be nonoscillatory on an interval 𝐽 if every solution has at most a finite number of zeros on 𝐽.
If 𝑡 = 𝑏 is an (possibly infinite) endpoint of 𝐽 which does not belong to 𝐽, then the equation is said to be nonoscillatory

at 𝑡 = 𝑏 if every solution has a finite number of zeros in 𝐽 or if the zeros do not accumulate at 𝑏.

Lemma 4.8. If 𝐴(𝐸) = Ω, then there exists a solution 𝑢 of (𝜏 − 𝐸)𝑓 = 0 such that 𝑢
(
𝑥𝑛
)
= 0, for all 𝑛 ∈ 𝐼.

Proof. If 𝐴(𝐸) = Ω, then there exists 𝑢 such that𝐻𝑢 = 𝐸𝑢, where𝐻 is the operator𝐻𝜔 with 𝜔(𝑛) = 0, for all 𝑛 ∈ 𝐼. From
Corollary 4.5 (b) the assertion follows. □

Theorem 4.9. Let 𝑉 be the potential appearing in the expression (3.1). Assume |𝑉(𝑥)| ≤ 𝐾 for all 𝑥 ∈ (𝑎, 𝑏). Let 𝐽 be an
interval such that

|𝐽| ≤ 2√
𝐾 + |𝐸|
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where |𝐽| denotes the length of the interval. Assume 𝐽 ∩ 𝑀 has at least two elements. Thenℙ(𝐵) = 0 for anymeasurable subset
𝐵 of 𝐴(𝐸).

Proof. Suppose there exists a measurable subset 𝐵 of 𝐴(𝐸) such that ℙ(𝐵) > 0, then from Theorem 4.4, 𝐴(𝐸) = Ω.
By Lemma 4.8, there exists a solution 𝑢 of (𝜏 − 𝐸)𝑓 = 0 such that 𝑢

(
𝑥𝑛
)
= 0, for all 𝑛 ∈ 𝐼. Using a theorem due to

Lyapunov, see Theorem 3.9 of [14] and Corollary 5.1 of [12], the interval 𝐽 is disconjugate, i.e. there is at most one zero of
any solution of (𝜏 − 𝐸)𝑓 = 0 in the interval 𝐽, since 𝑢 is solution this is a contradiction, henceℙ(𝐵) = 0 for anymeasurable
subset 𝐵 of 𝐴(𝐸). □

In the last theorem observe that the larger |𝐸| is the smaller |𝐽| has to be. This corresponds to the fact that the solutions
oscillate faster if the energy is high.

Theorem 4.10. Suppose (𝜏 − 𝐸)𝑓 = 0 is nonoscillatory in (𝑎, 𝑏) and the set of interactions 𝑀 is a countable set. Then
ℙ(𝐵) = 0 for any measurable subset 𝐵 of 𝐴(𝐸).

Proof. Suppose there exists a measurable subset 𝐵 of 𝐴(𝐸) such that ℙ(𝐵) > 0, then from Theorem 4.4, 𝐴(𝐸) = Ω.
By Lemma 4.8, there exists a solution 𝑢 of (𝜏 − 𝐸)𝑓 = 0 such that 𝑢

(
𝑥𝑛
)
= 0, for all 𝑛 ∈ 𝐼. The equation (𝜏 − 𝐸)𝑓 = 0

is nonoscillatory i.e. any solution in the interval (𝑎, 𝑏) has at most a finite number of zeros. Since 𝑢 is solution this is a
contradiction, hence ℙ(𝐵) = 0 for any measurable subset 𝐵 of 𝐴(𝐸). □

There are several conditions in the literature which allow us to conclude that our problem is nonoscillatory. Applying
a theorem of Hille, [14, Theorem 3.1], we get the following result.

Theorem 4.11. If 𝑉 is continuous in [𝑎,∞), 𝑉(𝑥) ≤ 𝐸, ∫ ∞
𝑎
(𝐸 − 𝑉(𝑥)) 𝑑𝑥 < ∞ and

lim sup
𝑥→∞

𝑥∫
∞

𝑥

(𝐸 − 𝑉(𝑡)) 𝑑𝑡 <
1

4
,

then (𝜏 − 𝐸)𝑓 = 0 is nonoscillatory at [𝑎,∞).

Finer estimates on the number of zeros can be used too, as the following result shows.

Theorem 4.12. Let 𝑉 be continuous in [0, 𝑇] satisfying |𝑉(𝑥)| ≤ 𝐾. If the number of points in𝑀 ∩ [0, 𝑇] is greater or equal
to

𝑇
√|𝐸| + 𝐾

2
+ 1,

then ℙ(𝐵) = 0 for any measurable subset 𝐵 of 𝐴(𝐸).

Proof. Using Corollary 5.2 in [12] we see that the number of zeros of any solution of (𝜏 − 𝐸)𝑓 = 0 is less than

𝑇
√|𝐸| + 𝐾

2
+ 1

and then the proof follows as in Theorem 4.9. □

4.2 Measurable operators

Now we introduce condition of measurability for the family of operators𝐻𝜔.
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Definition 4.13. See Lemma 1.2.2 in [24], Proposition 3 in [16].A family {𝑆𝜔}𝜔∈Ω of selfadjoint operators in a Hilbert space
ℌ is calledmeasurable if the mappings

𝜔 → ⟨𝜑, 𝐸𝜔(𝜆)𝜓⟩
are measurable for all 𝜑, 𝜓 ∈ ℌ, where 𝐸𝜔(𝜆) is the corresponding resolution of the identity of 𝑆𝜔.

Theorem 4.14. [Communicated to us by Peter Stollmann] Let

𝐴(𝐸) ∶=
{
𝜔 ∈ Ω ∶ 𝐸 ∈ 𝜎𝑝

(
𝑆𝜔
)}

be as in Definition 4.2. If
{
𝑆𝜔
}
𝜔∈Ω

is a measurable family of operators defined in a separable Hilbert space ℌ, then 𝐴(𝐸)
is measurable.

Proof. Let
{
𝜓𝑛
}
𝑛∈ℕ

be a countable dense subset ofℌ.
Observe that

𝐴(𝐸) =
⋃
𝑛∈ℕ

𝐴𝑛 (4.4)

where

𝐴𝑛 ∶=
{
𝜔 ∈ Ω ∶ 𝐸𝜔({𝐸})𝜓𝑛 ≠ 0}.

The set on the right hand side of (4.4) is contained in 𝐴(𝐸) since 𝐴(𝐸) =
{
𝜔 ∈ Ω |𝐸𝜔({𝐸}) ≠ 0}. To prove the other

inclusion, let 𝜔 ∈ 𝐴(𝐸) and assume that for all 𝑛, 𝐸𝜔({𝐸})𝜓𝑛 = 0. For any 𝑥 ∈ ℌ we have

⟨𝐸𝜔({𝐸})𝑥, 𝜓𝑛⟩ = ⟨𝑥, 𝐸𝜔({𝐸})𝜓𝑛⟩ = 0.
Since

{
𝜓𝑛
}
is dense, 𝐸𝜔({𝐸})𝑥 = 0 and 𝐸𝜔({𝐸}) = 0, which is a contradiction to 𝜔 ∈ 𝐴(𝐸). Therefore there is 𝑛0 such that

𝐸𝜔({𝐸})𝜓𝑛0 ≠ 0 and 𝜔 ∈ ⋃𝑛∈ℕ
𝐴𝑛.

We shall now prove that the sets 𝐴𝑛 are measurable.
Since 𝑆𝜔 is measurable, the function 𝑓𝑛 defined as 𝜔 → 𝑓𝑛(𝜔) ∶= ⟨𝜓𝑛, 𝐸𝜔({𝐸})𝜓𝑛⟩ is measurable for each 𝑛. We get

𝜔 ∈ 𝐴𝑐𝑛 if and only if

𝑓𝑛(𝜔) = ⟨𝜓𝑛, 𝐸𝜔({𝐸})𝜓𝑛⟩ = ‖‖𝐸𝜔({𝐸})𝜓𝑛‖‖2 = 0.
Thus

𝐴𝑐𝑛 =
{
𝜔 |𝐸𝜔({𝐸})𝜓𝑛 = 0} = 𝑓−1𝑛 ({0}).

It follows that 𝐴𝑐𝑛 and therefore 𝐴𝑛 are measurable sets. Hence 𝐴(𝐸) is a countable union of measurable sets, thus
measurable. □

Using Theorem 4.14 we obtain the following corollary of Theorem 4.4. Let
{
𝐻𝜔
}
𝜔∈Ω

be the family of operators intro-
duced in (4.1).

Corollary 4.15. Assume that the family
{
𝐻𝜔
}
𝜔∈Ω

is measurable. For fixed 𝐸 ∈ ℝ, one of the following options hold:

i) ℙ(𝐴(𝐸)) = 0;
ii) 𝐴(𝐸) = Ω.

Proof. Take 𝐵 = 𝐴(𝐸) in Theorem 4.4. □
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As an example of a measurable family, let us mention the operators generated by the formal differential expression

𝜏𝜔 ∶= −
𝑑2

𝑑𝑥2
+
∑
𝑛∈𝐼

𝜔(𝑛)𝛿
(
𝑥 − 𝑥𝑛

)
where 𝜔(𝑛) is a stationary metrically transitive random field satisfying |𝜔(𝑛)| ≤ 𝐶 < ∞, see [16]. In particular we can take
𝜔(𝑛) to be independent identically distributed random variables.
Since the operator generated by − 𝑑2

𝑑𝑥2
without point interactions does not have eigenvalues, we can apply Corollary 4.5

and obtain ℙ(𝐴(𝐸)) = 0. We get in this case a proof of a result due to Pastur which says that the probability of any fixed
𝜆 ∈ ℝ being an eigenvalue of finite multiplicity of a metrically transitive operator is zero, see Theorem 3 in [21] and
Theorem 2.12 in [20].

5 STURM–LIOUVILLE OPERATORSWITH 𝜹′-POINT INTERACTIONS

Now we consider operators with 𝛿′-interactions and show how analogous results can be obtained. Let −∞ ≤ 𝑎 < 𝑏 ≤∞,
let 𝑉 ∈ 𝐿1

𝑙𝑜𝑐
(𝑎, 𝑏) be a real valued function. Fix a discrete set𝑀 ∶=

{
𝑥𝑛
}
𝑛∈𝐼

⊂ (𝑎, 𝑏) where 𝐼 ⊆ ℤ and let
{
𝛼𝑛
}
𝑛∈𝐼

⊂ ℝ.
Consider the formal differential expression

𝜏𝛼,𝑀 ∶= −
𝑑2

𝑑𝑥2
+ 𝑉(𝑥) +

∑
𝑛∈𝐼

𝛼𝑛𝛿
′
(
𝑥 − 𝑥𝑛

)
.

The maximal operator 𝑇𝛼,𝑀 corresponding to 𝜏𝛼,𝑀 is defined by

𝑇𝛼,𝑀𝑓 = 𝜏𝑓 = −
𝑑2𝑓

𝑑𝑥2
+ 𝑉𝑓,

𝐷
(
𝑇𝛼,𝑀

)
=
{
𝑓 ∈ 𝐿2(𝑎, 𝑏) ∶ 𝑓, 𝑓′ abs. cont. in (𝑎, 𝑏)∖𝑀,−𝑓′′ + 𝑉𝑓 ∈ 𝐿2(𝑎, 𝑏),

𝑓′
(
𝑥𝑛 +

)
= 𝑓′

(
𝑥𝑛 −

)
, 𝑓
(
𝑥𝑛 +

)
− 𝑓
(
𝑥𝑛 −

)
= 𝛼𝑛𝑓

′(𝑥𝑛), for all𝑛 ∈ 𝐼
}
.

The construction is similar to that we have done in Section 4, but notice the change of the conditions at the points 𝑥𝑛.

Definition 5.1. A function 𝑓 is a solution of
(
𝜏𝛼,𝑀 − 𝜆

)
𝑓 = 0 if 𝑓 and 𝑓′ are absolutely continuous in (𝑎, 𝑏)∖𝑀 with

−𝑓′′ + 𝑉𝑓 − 𝜆𝑓 = 0 and 𝑓′
(
𝑥𝑛 +

)
= 𝑓′

(
𝑥𝑛 −

)
, 𝑓
(
𝑥𝑛 +

)
− 𝑓
(
𝑥𝑛 −

)
= 𝛼𝑛𝑓

′
(
𝑥𝑛
)
, for all𝑛 ∈ 𝐼.

Consider the selfadjoint restriction𝐻𝛼,𝑀 of 𝑇𝛼,𝑀 in 𝐿2(𝑎, 𝑏) defined as

𝐻𝛼,𝑀𝑓 = 𝜏𝑓, (5.1)

𝐷(𝐻𝛼,𝑀) =

{
𝑓 ∈ 𝐷

(
𝑇𝛼,𝑀

)
∶
[𝑣, 𝑓]𝑎 = 0 if 𝜏𝛼,𝑀 lcc at 𝑎,

[𝑤, 𝑓]𝑏 = 0 if 𝜏𝛼,𝑀 lcc at 𝑏

}
,

where 𝑣 and 𝑤 are non-trivial real solutions of
(
𝜏𝛼,𝑀 − 𝜆

)
𝑣 = 0 near 𝑎 and near 𝑏 respectively, 𝜆 ∈ ℝ. See [5, Theorem

5.2].
For the next definition we take 𝛼 = 0.

Definition 5.2. Let us define the function (𝑥, 𝑦; 𝑧) for𝐻0,𝑀 as

(𝑥, 𝑦; 𝑧) ∶=
{
𝑊
(
𝑢𝑏, 𝑢𝑎

)−1
𝑢′𝑎(𝑥, 𝑧)𝑢𝑏(𝑦, 𝑧) if 𝑥 ≤ 𝑦,

𝑊
(
𝑢𝑏, 𝑢𝑎

)−1
𝑢′
𝑏
(𝑥, 𝑧)𝑢𝑎(𝑦, 𝑧) if 𝑥 > 𝑦,

(5.2)
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where 𝑢𝑎 and 𝑢𝑏 are solutions of
(
𝜏0,𝑀 − 𝑧

)
𝑢 = 0 (see Definition 5.1) with

[
𝑣, 𝑢𝑎

]
𝑎
= 0 if 𝜏0,𝑀 lcc at 𝑎 and

[
𝑤, 𝑢𝑏

]
𝑏
= 0 if

𝜏0,𝑀 lcc at 𝑏.

Let us take from now on 𝜑 ∶ 𝐷
(
𝐻0,𝑀

)
→ ℂ given by 𝜑(𝑓) ∶= 𝛿′𝑥𝑛0 (𝑓) = 𝑓

′
(
𝑥𝑛0
)
. Similar to Lemma 3.7 we have:

Lemma 5.3.

i) The functional 𝜑 is not continuous in 𝐷
(
𝐻0,𝑀

)
with the norm of 𝐿2(𝑎, 𝑏).

ii) The functional 𝑙 ∶ 𝐿2(𝑎, 𝑏) → ℂ defined as 𝑙(𝑓) ∶= 𝜑
((
𝐻0,𝑀 + 𝑖

)−1
𝑓
)
is continuous.

Proof.

i) Take 𝜖 > 0 such that 𝐼𝜖 ∩ 𝑀 =
{
𝑥𝑛0
}
, where 𝐼𝜖 =

[
𝑥𝑛0 − 𝜖, 𝑥𝑛0 + 𝜖

]
. Let 𝐹 ∈ 𝐶∞

0
(−𝜖, 𝜖) such that 𝐹′(0) = 1 and

0 ≤ 𝐹(𝑥) ≤ 1. Let𝑓𝑛(𝑥) ∶= 𝐹(𝑛(𝑥 − 𝑥𝑛0)) if 𝑥 ∈ (𝑥𝑛0 − 𝜖

𝑛
, 𝑥𝑛0 +

𝜖

𝑛

)
and𝑓𝑛(𝑥) ∶= 0 if 𝑥 ∈ (𝑎, 𝑏)∖

(
𝑥𝑛0 −

𝜖

𝑛
, 𝑥𝑛0 +

𝜖

𝑛

)
.

Then 𝑓𝑛 ∈ 𝐷
(
𝐻0,𝑀

)
and

‖‖𝑓𝑛‖‖2 = ∫
𝑏

𝑎

𝑓2𝑛(𝑥) 𝑑𝑥 ≤ ∫
𝑏

𝑎

𝑓𝑛(𝑥) 𝑑𝑥 = ∫
𝑥𝑛0+

𝜖

𝑛

𝑥𝑛0−
𝜖

𝑛

𝐹
(
𝑛
(
𝑥 − 𝑥𝑛0

))
𝑑𝑥 =

1

𝑛∫
𝜖

−𝜖

𝐹(𝑦) 𝑑𝑦⟶ 0

as 𝑛 → ∞. Then 𝜑 is not bounded because if it would be, we would have

𝑛 = |𝑛𝐹′(0)| = ||𝑓′𝑛(𝑥𝑛0)|| ≤ 𝐶‖‖𝑓𝑛‖‖⟶0 as 𝑛 → ∞

getting a contradiction.
ii) Let 𝐺(𝑥, 𝑦; 𝑧) be the Green’s function defined in Definition 3.5, then

𝑑

𝑑𝑥

((
𝐻0,𝑀 − 𝑖

)−1
𝑓
)
(𝑥) = 𝑢′

𝑏
(𝑥)∫

𝑥

𝑎

𝑢𝑎(𝑦)𝑓(𝑦) 𝑑𝑦 + 𝑢
′
𝑎∫

𝑏

𝑥

𝑢𝑏(𝑦)𝑓(𝑦) 𝑑𝑦

= ∫
𝑏

𝑎

(𝑥, 𝑦; 𝑖)𝑓(𝑦) 𝑑𝑦

Hence

|𝑙(𝑓)| = ||||
((
𝐻0,𝑀 − 𝑖

)−1)
𝑓
(
𝑥𝑛0
)|||| =

|||||∫
𝑏

𝑎

(𝑥𝑛0 , 𝑦; 𝑖)𝑓(𝑦) 𝑑𝑦||||| ≤ ‖‖
(
𝑥𝑛0 , ⋅ ; 𝑖

)‖‖ ‖𝑓‖.
□

Let 𝐻̇0,𝑀 = 𝐻0,𝑀|𝐷𝜑 with
𝐷𝜑 ∶=

{
𝑓 ∈ 𝐷

(
𝐻0,𝑀

)
∶ 𝜑(𝑓) = 𝑓′

(
𝑥𝑛0
)
= 0
}
. (5.3)

From Lemmas 2.2, 2.3 and 5.3, we have that 𝐻̇0,𝑀 is a symmetric operator with defect indices (1,1). By the von Neumann
theory, the selfadjoint extensions 𝑇𝜃 of the symmetric operator 𝐻̇0,𝑀 are given by

𝐷(𝑇𝜃) =
{
𝑔 + 𝑐𝜓+ + 𝑐𝑒

𝑖𝜃𝜓− ∶ 𝑐 ∈ ℂ, 𝑔 ∈ 𝐷
(
𝐻̇0,𝑀

)}
,

𝑇𝜃
(
𝑔 + 𝑐𝜓+ + 𝑐𝑒

𝑖𝜃𝜓−
)
= 𝐻̇0,𝑀 𝑔 + 𝑖𝑐𝜓+ − 𝑖𝑐𝑒

𝑖𝜃𝜓−,

for 𝜃 ∈ [0, 2𝜋), where 𝜓± ∈ Kern
(
𝐻̇∗
0,𝑀

∓ 𝑖
)
.
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Lemma 5.4. The functions 𝜓± introduced above can be chosen as

𝜓± = (𝑥𝑛0 , ⋅ ; ∓𝑖).
Proof. The proof is similar to that of Lemma 3.8. □

Theorem 5.5. Let 𝑇𝜃 be a selfadjoint extension of 𝐻̇0,𝑀 . Then there exists a unique 𝛼 ∈ ℝ such that 𝑇𝜃 = 𝐻𝛼,𝑀 . Conversely,
given 𝛼 ∈ ℝ there exists a unique 𝜃 ∈ [0, 2𝜋) such that 𝑇𝜃 = 𝐻𝛼,𝑀 .

Proof. The proof is similar to that of Theorem 3.9. □

Theorem 5.6. Let 𝐸 ∈ ℝ be fixed. Then for the set

𝐴(𝐸) ∶=
{
𝛼 ∈ ℝ ∶ 𝐸 ∈ 𝜎𝑝

(
𝐻𝛼,𝑀

)}
there are two possibilities:

i) 𝐴(𝐸) = ℝ.
ii) 𝐴(𝐸) has at most one element.

Proof. The proof is similar to that of Theorem 3.12. □

Remark 5.7. FromTheorem 2.1, case 𝑖) happens if and only if the eigenvector associated to the eigenvalue 𝐸 is on𝐷
(
𝐻̇0,𝑀

)
.

Let 𝜔 = {𝜔(𝑛)}𝑛∈𝐼 ∈ Ω, where Ω is defined as in Section 4. Consider the formal differential expression

𝜏𝜔 ∶= −
𝑑2

𝑑𝑥2
+ 𝑉(𝑥) +

∑
𝑛∈𝐼

𝜔(𝑛)𝛿′
(
𝑥 − 𝑥𝑛

)
.

The maximal operator 𝑇𝜔 corresponding to 𝜏𝜔 is defined by

𝑇𝜔𝑓 = 𝜏𝑓 = −
𝑑2𝑓

𝑑𝑥2
+ 𝑉𝑓,

𝐷(𝑇𝜔) =
{
𝑓 ∈ 𝐿2(𝑎, 𝑏) ∶ 𝑓, 𝑓′ abs. cont. in (𝑎, 𝑏)∖𝑀,−𝑓′′ + 𝑉𝑓 ∈ 𝐿2(𝑎, 𝑏),

𝑓′
(
𝑥𝑛 +

)
= 𝑓′

(
𝑥𝑛 −

)
, 𝑓
(
𝑥𝑛 +

)
− 𝑓
(
𝑥𝑛 −

)
= 𝜔(𝑛)𝑓′(𝑥𝑛), for all𝑛 ∈ 𝐼

}
.

The construction is similar to that we have done in Section 4, but notice the change of the conditions at the points 𝑥𝑛.
Assume the limit point occurs at 𝑎 or that 𝜏𝜔 is regular at 𝑎 (see Definition 3.6) and the same possibilities for 𝑏.
For 𝜃, 𝛾 ∈ [0, 𝜋) fixed, let𝐻𝜃,𝛾𝜔 be the selfadjoint restriction of 𝑇𝜔 defined as

𝐻
𝜃,𝛾
𝜔 𝑓 = 𝜏𝑓, (5.4)

𝐷(𝐻
𝜃,𝛾
𝜔 ) =

{
𝑓 ∈ 𝐷

(
𝑇𝜔
)
∶
𝑓(𝑎) cos 𝜃 + 𝑓′(𝑎) sin 𝜃 = 0 in case 𝜏𝜔 regular at 𝑎,
𝑓(𝑏) cos 𝛾 + 𝑓′(𝑏) sin 𝛾 = 0 in case 𝜏𝜔 regular at 𝑎

}
.

Notice that the index 𝜃 or 𝛾 are meaningless if 𝜏𝜔 is lpc at 𝑎 or 𝑏.
In what follows instead of𝐻𝜃,𝛾𝜔 we shall write𝐻𝜔.
Similarly to what has been done before, one can prove for this𝐻𝜔 with 𝛿′ interactions the following theorem.

Theorem 5.8. Let 𝐸 ∈ ℝ be fixed and let 𝐵 be any measurable subset of

𝐴(𝐸) ∶=
{
𝜔 ∈ Ω ∶ 𝐸 ∈ 𝜎𝑝

(
𝐻𝜔
)}
.
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Then one of the following options hold:

i) ℙ(𝐵) = 0,
ii) 𝐴(𝐸) = Ω.

Remark 5.9. Mixed situations where 𝛿 and 𝛿′ interactions are present can be treated with the arguments given above.
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